Spectroscopy |: Optical and Electronic

Spectroscopy is the use of light, sound or particle
emission to study matter. It originated through the study
of visible light dispersed, according to its wavelength, by
a prism. Later, the concept was expanded greatly to
comprise any Interaction with radiative energy as a
function of its wavelength or frequency.

The data that is obtained from spectroscopy is called a
spectrum. A spectrum can be used to obtain information
about the specimen’s energy states, its atomic or
molecular arrangements, and related processes.



Nature of the interaction between radiation and material

Types of spectroscopy can be distinguished by the nature of
the interaction between the energy and the material.

€ Absorption: measuring the fraction of incident energy transmitted
through the material.

€ Emission: radiative energy released by the material.

@ Elastic Scattering: incident radiation reflected or transmitted by a
material without energy loss.

@ Inelastic Scattering: involving an exchange of energy between the
radiation and the matter that shifts the wavelength of the scattered
radiation.

€ Refraction: the ability of a medium to impede or slow the
transmittance of energy.

€ Resonance: radiative energy couples two quantum states of the
material in a coherent interaction.
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Particle nature of photons

Einstein” s proposal:

E=hv = P=h/\n




Energy levels and bands
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Electronic and vibrational levels

Born-Oppenheimer Approximation
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Transition between two quantum states

Fermi's golden rule

Transition rate:
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Transition probability Density of final states

Transition probability is determined by the wavefunction
overlapping of initial and final states, and dictated by the
selection rules reflecting the nature of interaction H'.



Various spectroscopic methods

Spectroscopy is the use of light, sound or particle emission to study matter.
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Fluorescence Spectroscopy
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Jablonski Energy Diagram
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Various Lasers
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Instrumentation
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Infrared Spectroscopy

Infrared spectroscopy exploits the fact that molecules absorb
specific frequencies that are characteristic of their structure.
These absorptions are resonant frequencies.

The infrared portion of the electromagnetic spectrum is usually
divided into three regions; the near-, mid- and far- infrared,
named for their relation to the visible spectrum. The higher-
energy near-IR, approximately 14000—-4000 cm=! (0.8-2.5 ym
wavelength) can excite harmonic vibrations. The mid-infrared,
approximately 4000—400 cm™' (2.5-25 pym) may be used to
study the fundamental vibrations and associated rotational-
vibrational structure. The far-infrared, approximately 400-10 cm
-1 (25-1000 um), lying adjacent to the microwave region, has
low energy and may be used for rotational spectroscopy.
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Figure 8.5. FTIR spectra of boron nitride nanopowder surfaces after activation at 875K (tracing
a), after subsequent deuteration (tracing b), and (c) difference spectrum of a subtracted from b
(tracing c). [From M.-I. Baraton and L. Merhari, P. Quintard, V. Lorezenvilli, Langmuir, 9, 1486
(1993).]



Fourier transform infrared spectroscopy (FTIR)

FTIR is a technique which a spectrometer simultaneously
collects spectral data in a wide spectral range. This confers a
significant advantage over a dispersive spectrometer which
measures intensity over a narrow range of wavelengths at a
time. FTIR has made dispersive infrared spectrometers all but

obsolete.
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The Theory of Raman Spectroscopy
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Figure 8.19. Raman spectra of (a) crystailine graphites and (b) noncrystaliine, mainly graphitic,
carbons. The D band appears near 1355cm™" and the G band, near 1580cm~'. [From
D. S. Knight and W. B. White, J. Mater, Sci. 4, 385 (1989) ]



X-ray Photoelectron Spectroscopy (XPS)
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Concentric Hemispherical Analyzer (CHA)

AE/E, = s/ R,
s: mean slit width; R,: mean radius
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Angle-resolved photoemission spectroscopy
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